Matches in Nanopublications for { ?s ?p ?o <http://www.tkuhn.ch/bel2nanopub/RA2bWyJd8ydcshdQuGYUOLeKEsGpJsjeVh-nTnHlhgioo#provenance>. }
Showing items 1 to 11 of
11
with 100 items per page.
- _5 label "Selventa" provenance.
- large_corpus.bel title "BEL Framework Large Corpus Document" provenance.
- large_corpus.bel description "Approximately 61,000 statements." provenance.
- large_corpus.bel version "20131211" provenance.
- large_corpus.bel authoredBy _5 provenance.
- assertion wasDerivedFrom large_corpus.bel provenance.
- assertion wasDerivedFrom _4 provenance.
- assertion hadPrimarySource 11502593 provenance.
- _4 wasQuotedFrom 11502593 provenance.
- _4 value "The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in the renal cortical collecting duct (CCD) has not yet been fully elucidated. Here, we investigated the effects of deamino-8-D-arginine vasopressin (dDAVP) and isoproterenol (ISO) on NaCl transport in primary cultured CCDs microdissected from normal [CFTR(+/+)] and CFTR-knockout [CFTR(-/-)] mice. dDAVP stimulated the benzamyl amiloride (BAm)-sensitive transport of Na(+) assessed by the short-circuit current (I(sc)) method in both CFTR(+/+) and CFTR(-/-) CCDs to a very similar degree. Apical addition of 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) or glibenclamide partially inhibited the rise in I(sc) induced by dDAVP and ISO in BAm-treated CFTR(+/+) CCDs, whereas dDAVP, ISO, and NPPB did not alter I(sc) in BAm-treated CFTR(-/-) CCDs. dDAVP stimulated the apical-to-basal flux and, to a lesser extent, the basal-to-apical flux of (36)Cl(-) in CFTR(+/+) CCDs. dDAVP also increased the apical-to-basal (36)Cl(-) flux in CFTR(-/-) CCDs but not the basal-to-apical (36)Cl(-) flux. These results demonstrate that CFTR mediates the cAMP-stimulated component of secreted Cl(-) in mouse CCD." provenance.
- large_corpus.bel rights "Copyright (c) 2011-2012, Selventa. All rights reserved." provenance.