Matches in Nanopublications for { <http://purl.obolibrary.org/obo/STATO_0000415> ?p ?o ?g. }
Showing items 1 to 29 of
29
with 100 items per page.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 label "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." assertion.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.
- STATO_0000415 hasLabelFromApi "accuracy - in the context of binary classification, accuracy is defined as the proportion of true results (both true positives and true negatives) to the total number of cases examined (the sum of true positive, true negative, false positive and false negative). It can be understood as a measure of the proximity of measurement results to the true value." pubinfo.